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1. Introduction

The quest for finding optimum solutions to engineering problems has existed for a

long time. In modern times, the development of optimization as a branch of applied

mathematics is regarded to have originated in the works of Newton, Bernoulli and Euler.

Venkayya has presented a historical perspective on optimization in [1]. The term

'optimization' is defined by Ashley [2] as a procedure "...which attempts to choose the

variables in a design process so as formally to achieve the best value of some

performance index while not violating any of the associated conditions or constraints".

Ashley presented an extensive review of practical applications of optimization in the

aeronautical field till about 1980 [2]. It was noted that there existed an enormous amount

of published literature in the field of optimization, but its practical applications in

industry were very limited. Over the past 15 years, though, optimization has been widely

applied to address practical problems in aerospace design [3-5].

The design of high performance aerospace systems is a complex task. It involves the

integration of several disciplines such as aerodynamics, structural analysis, dynamics, and

aeroelasticity. The problem involves multiple objectives and constraints pertaining to the

design criteria associated with each of these disciplines. Many important trade-offs exist

between the parameters involved which are used to define the different disciplines.

Therefore, the development of multidisciplinary design optimization (MDO) techniques,

in which different disciplines and design parameters are coupled into a closed loop

numerical procedure, seems appropriate to address such a complex problem. The
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importanceof MDO in successfuldesignof aerospace systems has been long recognized.

Recent developments in this field have been surveyed by Sobieszczanski-Sobieski and

Haftka [6].

1.1 Multidisciplinary Design Optimization of Smart Composite Wings

The use of multidisciplinary optimization techniques in aircraft design has been

increasing over the past decades. A recent survey of MDO applications in preliminary

aircraft design has been presented by Kroo [7] . The analysis methods used in MDO

range from simple analytical or empirical expressions to complex finite element models

[8-11]. The validity of the designs obtained using MDO procedures depends strongly

upon the accuracy of the analytical methods used. Therefore, it is essential to integrate

accurate and efficient analysis techniques to obtain meaningful optimum designs.

Due to the high stiffness-to-weight ratio and directional stiffness and strength

properties offered by advanced composites, they are increasingly being used in aircraft

wing design. The deformation of the wing under load is directly related to the stacking

sequence of the orthotropic composite laminae. Hence, for aircraft wings made out of

composite materials, aeroelastic tailoring presents an opportunity to enhance structural,

aerodynamic and control performance by utilizing their unique stiffness and strength

properties. A comprehensive review of the aeroelastic tailoring technology was

presented by Shirk et al. [12]. It was noted that aeroelastic tailoring has matured as a

result of developments in composite material analysis and optimization techniques. Since

aircraft wing design is a multidisciplinary problem involving the coupling of various

disciplines such as aerodynamics, composite structural analysis, dynamics and
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aeroelasticity,the useof MDO techniquesseemsappropriate. Key elementsassociated

with the useof MDO in wing designarethe developmentof sophisticatedoptimization

techniquesandaccurateanalysismethods.

1.1.1 Optimization Techniques

The design of composite wings to achieve high flutter and divergence speeds while

maintaining a low structural weight and stresses within allowable limits, is a truly

multidisciplinary problem. A number of optimization procedures have been developed

for minimum weight design of wing structures with aeroelastic and other constraints.

Most notable among these is the Automated Structural Optimization System (ASTROS)

[13]. The procedure uses the finite element method for structural analysis and gradient

based techniques for optimization.

In general, an optimization problem can be associated with several objective

functions, constraints and design variables. However, in many existing procedures the

problem is formulated with a single objective function subject to several constraints [13].

Such procedures do not allow simultaneous minimization or maximization of more than

one objective. A commonly used technique for addressing multiobjective problems is to

combine individual objective functions in a linear fashion using weight factors [14].

Such methods are judgmental in nature as the answer depends upon weight factors which

are often hard to justify. Also, the procedures do not satisfy the Kuhn-Tucker conditions

of optimality [14]. To address this issue in a mathematically rigorous way, several

formal multiobjective techniques have been developed by Chattopadhyay and McCarthy

[15]. In the first method, called the modified global criterion approach, the individual
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objective functionsarecombinedinto a singlecompositefunction usingthe optimized

valuesfor eachobjective function. The optimizedvaluesareobtainedthrough single

objective minimization or maximization prior to multiobjective formulation. The

drawback of the method is that several single objective optimizations have to be

performedto obtainthe optimizedvalues. Therefore,this methodis not very efficient

computationally. Another method, called 'Min Zg' (Minimum sum beta) [15], uses

pseudo-designvariablesthat representdeviationsof the individual objective functions

from respectivetarget values. The objective function is then defined as a linear

combinationof thesepseudo-designvariables. An appealingfeatureof this approachis

thefact that theobjectivefunctionis a purely linear function. However,the prescription

of thetargetvaluesis ratherarbitraryandhenceproneto error.

Themultiobjectiveoptimizationformulationusedin thepresentwork is basedon the

Kreisselmeier-Steinhauser(K-S) functiontechnique[16]. TheK-S functionapproachcan

be appliedto problemswith multipleobjectivesandinequalityconstraints[17]. In this

approach,eachof theoriginal objectivefunctionsis transformedinto reducedobjective

functionsusingthevalueof theoriginalobjectivefunctionscalculatedatthebeginningof

the cycle. The reducedobjective functions are analogousto constraints. A new

constraintvector is definedcombiningthe originalconstraintsandthe reducedobjective

functions. Using the K-S function, a new objective function is now obtained which

representsthe original objective functions and constraints. Thus the K-S function

techniqueefficiently integratesthe objective functions and constraintsinto a single

envelopfunction. The designvariablevector in this formulation remainsunchanged.

The resultingunconstrainedproblemcanbesolvedusinganyof the standardtechniques

for nonlinear optimization [14]. The searchdirection vector is obtained using the
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Broyden-Fletcher-Goldberg-Shanno(BFGS) algorithm. With the search direction

determined,a one-dimensionalsearchfor theminimumof the K-S functionis performed

using the threepoint quadraticapproximationfor step length [14]. The gradientsfor

objectivefunctionsandconstraintsareevaluatedusingthefinite differencemethod.

Sinceduringanoptimizationprocess,severalcomputationsof theobjectivefunctions

andconstraintsarenecessary,it is computationallyexpensiveto useexactanalysisall the

time. Therefore,approximationtechniquesare commonlyusedto reducethe analysis

effort. Severaldifferentapproximationtechniqueshavebeenusedin the literature,the

most notable being the linear Taylor series and the reciprocal Taylor series

approximations[14]. In thisresearch,thetwo-pointapproximationtechnique[18], which

hasbeen found to be well suitedfor nonlinearoptimization problems, is used. This

techniqueusesthe gradientinformation from the previousand currentdesigncycles to

constructthe approximatefunctionvalue. In the limiting casesthe expansionreducesto

thefirst orderTaylor seriesor thereciprocalapproximationform.

In compositewings, the ply stackingsequencehasa very strong influenceon the

designobjectivesand constraints. Often, ply anglesare treatedas continuousdesign

variables,suchasin ASTROS[13], andtheresultingsolution is replacedby the nearest

integralvaluewhich canleadto suboptimaldesign. In practice,ply orientations(andply

thickness)areselectedfrom a rangeof practical discretevalues. Henceply anglesare

besttreatedasdiscretedesignvariables.However,parameterssuchaswing span,chord

and other dimensionsrepresentcontinuousvariables. Therefore,the compositewing

optimizationprobleminvolvesbothcontinuousanddiscretedesignvariables.Recently,a

hybrid optimization techniquehas beendevelopedby Seeleyand Chattopadhyayto

simultaneouslyinclude continuousand discrete designvariables in the optimization
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problem[19]. Sincethehybrid optimizationusesa combinatorialsearchtechnique[14]

for discretedesignvariables,theprocedurecanbeexpensivecomputationally.Therefore,

this approachhasbeenusedfor only someof theoptimizationproblemsaddressedin the

presentresearch.

1.1.2 Composite Structural Analysis

The structural analysis of aircraft wings can be performed either through a detailed

investigation of the wing sections comprising skins, spars, ribs etc. or through the use of

reduced structural models. The detailed analysis based on a full three-dimensional finite

element solution [13] is computationally very expensive and requires a large modeling

time. Hence, such techniques can be impractical in design optimization or trade-off

studies during the conceptual design phase. Therefore, procedures based on reduced

structural models, such as 'box beam' and 'equivalent plate', are frequently used during

conceptual wing design.

Among the aeroelastic analysis and optimization procedures based on reduced

structural model, TSO [20] and ELAPS [21-22] have been widely used. These

procedures use an equivalent plate model for structural analysis. The wing box geometry

in TSO is limited to trapezoidal planforms, whereas ELAPS can analyze cranked wings

through multiple trapezoidal segments. The depth of the structural box, which consists of

cover skins and rib, stiffener and spar caps, can be varied over the planform using this

procedure. Another procedure, named LS-CLASS [23], uses a structural model similar to

ELAPS and includes analytical sensitivity derivatives for efficient aeroservoelastic

optimization. However, all of these techniques are based on the Classical Laminate

Theory (CLT) [24] which assumes that normals to the midplane before deformation
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remain straight and normal to the plane after deformation. Thus CLT assumes

deformationdueentirely to bendingandinplanestretchingandneglectstransverseshear

stresses. Experimental results indicate that CLT underpredicts deflections and

overpredictsnaturalfrequencies[24]. Extensivestudiescomparingthe resultsfrom CLT

basedequivalentplate models to detailedfinite elementmodelshave shown serious

limitationsof theformerapproach[25-26]. Thelargesterrorsarereportedin thetorsional

behavior. Therepresentationof thetransverseshearis identifiedastheprincipal reason

for the differences. An equivalent plate model based on the First-order Shear

DeformationTheory (FSDT) [24] yieldsa bettercorrelationwith finite elementsolution

[25-26].

important.

thickness.

becausethey dependon the laminapropertiesandthe laminationscheme.

moreaccuratedescriptionof thetransverseshearstressesis necessary.

Thus, the inclusion of transverseshearin equivalentplate models is very

The FSDT assumesconstanttransverseshearstrain through the laminate

This theory requiresshearcorrectionfactorswhich are difficult to obtain

Therefore,a

The Higher-OrderShearDeformationTheory (HSDT) is capableof accuratelyand

efficiently predictingthe transverseshearstressesin composites[24]. This theory was

usedto developa compositeboxbeammodelby McCarthyand Chattopadhyay[27-29].

In this model,eachwall of theboxbeamis analyzedasa compositeplateusingarefined

higher-orderdisplacementfield [30]. Continuity betweenthe displacementfields is

enforcedatthe fourcornersthroughoutthethicknessof eachplate. Themodelaccurately

capturesthe transverseshearstressesthroughthe thicknessof eachwall while satisfying

stress free boundary conditions on the inner and outer surfaces. The formulation

approximatesthree-dimensionalelasticity solution so that the beam cross-sectional

propertiesarenot reducedto one-dimensionalparameters.Both inplaneandout-of-plane
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warpingareautomaticallyincludedin theformulation. Thefinite elementmethodis used

to solvethe governingequationsof motion. Themodel hasbeenvalidatedextensively

for thin- and thick-walled compositelaminatesthroughcomparisonswith experimental

results,other appropriatetheoriesand three-dimensionalfinite elementanalysisusing

brick elements[27-29]. This method is used in the presentwork for accurateand

efficient compositestructuralanalysisof aircraftwings.

1.1.3 Aeroelastic Analysis

Aeroelastic analysis plays a vital role in the design of a high performance aircraft.

History of the U.S. Supersonic Transport program shows that the entire aircraft design

process was driven by the aeroelastic design cycle [31]. To effectively integrate

aeroelastic analysis with the design of composite wings, computationally efficient yet

analytically rigorous methods are necessary. The key issues associated with the

aeroelastic stability analysis include structural dynamic calculations for natural frequency

and mode shapes, unsteady aerodynamic computations to obtain generalized aerodynamic

forces and flutter calculation methodology. These issues are briefly discussed next.

The objective of the aeroelastic analysis is to identify the flight condition (velocity

and atmospheric density or altitude) at which the aeroelastic system is neutrally stable.

At this condition, the system is purely oscillatory and the aerodynamic loads calculated

for simple harmonic motion are adequate. The technique for the prediction of three-

dimensional unsteady aerodynamic forces for purely oscillatory motion is well

developed. In the present research, the generalized aerodynamic forces are computed

using the constant-pressure lifting surface method [32] at a given Mach number for

specified values of reduced frequency k, assuming simple harmonic motion. This method
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is basedon linearizedaerodynamicpotentialtheory. The lifting surfaceis divided into

small trapezoidalpanels,with unknownconstantpressure,arrangedin strips parallel to

the free stream. The downwashboundarycondition calculatedfrom and deflection of

structuralmodesis satisfiedat mid-spanthree-quarterchordpoint of eachpanel,leading

to thedeterminationof theunknownpressuresandtheaerodynamicforces.

Assumingthattheaeroelasticsystemperformsa simpleharmonicmotionandthe use

of purelyoscillatoryair loads,leadsto the classicalV-g methodof flutter prediction [33]

which hasbeenextensivelyused. However, the method is iterative in naturewhich

reducestheefficiencyandtheresultsareaccurateonly attheflutter boundary.To gainan

insight into the physical phenomenaleadingto flutter, it is necessaryto obtain valid

dampingand frequencyhistory. The Laplacedomainmethod of flutter analysis [34]

producesroot-lociof thesystemwhichaffordssuchaninsight. Theprincipaldifficulty in

implementingthe Laplacedomainmethodlies in obtainingthe air loadsfor arbitrary

motions, since aerodynamiccalculationsarewell developedonly for simple harmonic

motions. This problemis overcomethroughthe useof rational functionapproximations

(RFA's). The generalizedaerodynamicforces contain transcendentalterms when

expressedasa function in the Laplacedomain. To obtaina finite numberof terms,the

aerodynamicforcesareapproximatedby a rational function of the nondimensionalized

Laplacevariablep. Several formulations of the RFA's are available in the literature [34-

37]. The capabilities of these formulations have been extended and their performances

compared in [38]. In the current work, the 'least-squares' approach of [35-36], which has

been used by many researchers, has been adopted.

1.1.4 Aerodynamic Analysis



11

To obtain aerodynamic efficiency (lift-to-drag ratio), it is necessary to compute lift

and drag for the wing. Wing drag at high subsonic or transonic Mach numbers comprises

induced drag, skin-friction drag and compressibility (wave) drag. The panel method

based on the constant-pressure lifting surface [32] is also capable of predicting steady

normal forces. The components of the normal force along the freestream and the

direction perpendicular to it yield induced drag and lift, respectively. The skin-friction

drag arises from the viscous effects in the mostly turbulent boundary layer adjacent to the

wing surface. The turbulent boundary layer problem is a very difficult one to solve

theoretically. Instead, empirical formulae developed by von Kfirmfin or Schlichting [39]

are often employed to compute turbulent skin-friction drag. In the current study, the skin-

friction drag is calculated using the Schlichting empirical formula, corrected to include

the Mach number effect [40].

The compressibility drag refers to the pressure drag resulting from increase in Mach

number above low subsonic value. At high subsonic or transonic Mach numbers, shocks

develop on the top of the wing due to increased airflow velocity, which leads to 'drag

rise'. The drag rise can be analytically predicted only through the use of sophisticated

nonlinear computational aerodynamic analysis, since the linear analysis in this Mach

number regime produces completely incorrect results [40]. Therefore, an empirical

method described in [41] has been used in the current work to obtain the compressibility

drag. This method, called the 'crest-critical Mach number method', has been used in other

optimization studies [9, 42]. In this approach, the free stream Mach number which gives

sonic flow at the highest point on the airfoil (tangent to the free stream) is first

determined. This Mach number, called the crest-critical Mach number, is a function of

airfoil thickness-to-chord ratio, lift coefficient and wing sweep. The compressibility drag
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is then obtained using empirical relationshipbetweenthe ratio of freestreamMach

numberto thecrest-criticalMachnumberanddragrise.

1.1.5 Smart Composite Wing Design

Smart materials respond to an external stimulus, such as electric field, by changing

their shape. When attached to a host structure, they cause deformation of the structure.

The feasibility of using smart structures is increasing because of the availability of smart

materials commercially, ease of integration with laminated structures, potential of large

performance enhancement and advances in related fields [43]. Piezoelectric materials are

popular for aeroelastic/aerodynamic and vibration control [44]. When a piezoelectric

material is stressed mechanically by a force, it generates an electric charge. Conversely,

when an electric field is applied, the material elongates or shortens depending on the

polarity of the applied electric field. A piezoelectric element is therefore capable of being

used both as actuators and sensors. Currently, most piezoelectric devices utilize lead

zirconate titanate (PZT), which is a piezoceramic material. The desirable properties of

PZT include a high level of piezoelectric activity, a wide frequency range and first-order

linearity between applied voltage and induced strain [43].

Composite wings with either embedded or surface bonded PZT actuators / sensors

have been investigated by researchers. Heeg [45] demonstrated analytically and

experimentally that piezoelectric materials can increase the flutter speed of a simple two

degree of freedom wing model. Song et al. [46] showed that incorporation of

piezoelectric layers in a wing can improve both divergence instability and aeroelastic lift

distribution. Paige et al. [47] used piezoelectric actuation to control panel flutter. The

structural modeling issues associated with piezoelectric actuation of composite plates
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havealsobeenconsidered.Thedisplacementfield basedon theclassicallaminatetheory

is usedby Chopra[43] andCrawleyandLazarus[48]. Chattopadhyayand Seeley[49]

andSeeley[50] haveusedthehigher-ordertheory(HSDT)for modelingcompositeplates

with piezoelectricactuators/sensors.The presentresearchusesthe abovehigher-order

platetheory to modelcompositebox beamswith surfacebondedpiezoelectricactuators.

The formulationof the box beam(with taperandsweep)is similar to that of McCarthy

[27] andMcCarthyandChattopadhyay[28, 29]. Thegoverningequationsof motion are

solvedusingthefinite elementmethodto beableto addressrealisticwing geometries.

Theplacementandthenumberof actuatorsnecessaryfor improvedaeroelasticcontrol

require the use of formal optimization techniques. Severalinvestigationshave been

reportedwhich addressthe issueof actuatorplacementusingboth deterministic[51-52]

and heuristic [53-55]approaches.For aeroelasticcontrol, actuatorsplacedat wing root

havebeenshownto bemosteffective[52, 55]. Powerconsumptionis alsoan important

issuerelatedto thepiezoelectricactuationof structures,especiallyfor activecontrol with

multiple actuators/sensors[56].

In thepresentresearch,a newprocedurefor themultidisciplinarydesignoptimization

of smartcompositewings hasbeendeveloped,incorporatingoptimization and analysis

methodsdiscussedabove. Theprincipal loadcarryingmemberof thewing is modeledas

a compositebox beamwith surfacebondedpiezoelectricactuators. The optimization

problem is formulatedwith the coupling of structural,aerodynamic,aeroelasticand

control (passive)designcriteria. The higher-ordertheoryhasbeenusedfor the wing

structuralanalysisandits impacton aeroelasticresultshavebeendemonstratedthrough

comparisonswith thoseobtainedusingCLT. Theeffectof compositeply orientationson
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demonstratedthroughapplicationsto wing design.
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The developedMDO proceduresare

1.2 Multidisciplinary Design Optimization of Turbomachinery Blades

High performance aircraft engine components operate under severe aerodynamic,

thermal and structural environments. The design of the blade profile is one of the major

aspects in engine design [57]. Engine performance is strongly affected by the

aerodynamic efficiency of the blades, which can be enhanced through efficient design of

the blade external shape. Sharp fluctuations in the blade (suction and pressure) surface

Mach number can lead to flow separation resulting in loss of aerodynamic efficiency.

Airflow velocity also impacts blade cooling and temperature distributions. The

maximum and average temperatures of the blade are desired to be minimum, as the

structural integrity and engine life are affected by these temperatures. From the structural

point of view, it is important to maintain blade stresses and vibration levels within the

allowable limits. Therefore, efficient blade design is a multidisciplinary problem that

requires the integration of several disciplines such as aerodynamics, heat transfer and

structures.

The direct design method, in which the designer changes the blade geometry

iteratively until desired performance is achieved, affords direct control of the blade design

parameters. However, this method is very laborious and requires considerable insight

[58]. In the inverse design method [59], the performance is specified in terms of velocity

or pressure distributions to obtain the desired blade shape. This requires a knowledge of

the desired velocity or pressure distribution. Also, the imposition of constraints is not

easily applicable in inverse design.
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Designoptimization techniqueshave beenusedby many researchersto optimize

airfoil shapefor aircraft wings [60-61]. However, the application of optimization

proceduresto turbomachinerybladedesignhasbeenratherlimited. Chattopadhyayet al.

[62] developed an optimization procedure for efficient design of turbine blades which

successfully eliminated the leading edge velocity spikes while maintaining the tangential

force coefficient. Aerodynamic analysis was performed using a two-dimensional panel

code. The pressure and suction surfaces were approximated by polynomials, whereas

circular and elliptic arcs were used to describe the leading edges. The procedure was

further extended by Narayan et al. [63] to include heat transfer criteria where coolant hole

shapes and sizes were included as additional design variables. This multidisciplinary

optimization procedure resulted in significant reduction in blade temperatures and smooth

velocity distributions. For aerodynamic optimization, Goel et al. [64] used a combination

of numerical optimization, hill climbing and genetic algorithm in an attempt to overcome

the problem of local minima, since the turbine design problem is mutimodal. Turbine

blade geometry was represented by Bezier-Bernstein polynomial [65]. Blade

performance was measured by the distribution of the surface Mach number obtained

through inviscid flow calculations.

The current work presents the development and application of a new multidisciplinary

optimization procedure incorporating more comprehensive analysis methods for the

design of turbine blades. The procedure integrates aerodynamic and heat transfer design

considerations, with mechanical constraints on blade geometry. Bezier-Bernstein

polynomial is used to accurately represent airfoil shape with a relatively small number of

design variables. The aerodynamic analysis is based on the thin shear layer

approximation of the Navier-Stokes equations [66-67]. Grid generation is accomplished
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by solving Poisson equations with arbitrarily specified inner and outer boundary points

[68-69]. A finite element formulation is used to calculate blade interior temperatures.

Total pressure and exit kinetic energy losses are minimized through a constrained

multiobjective optimization formulation using the Kreisselmeier-Steinhauser (K-S)

function approach discussed earlier. The maximum and average blade temperatures and

certain geometric parameters of the blade are treated as constraints.



2. Objectives

The primary objective of the present research is to develop a multidisciplinary

optimization procedure for the conceptual design of composite aircraft wings with surface

bonded piezoelectric actuators. The optimization problem addressed involves the

coupling of structural mechanics (including smart material), aeroelasticity and

aerodynamics. The validity of the designs obtained using MDO procedures depends

strongly upon the accuracy of the analytical methods used. Therefore, it is essential to

integrate accurate and efficient analysis techniques to obtain meaningful optimum designs

within a reasonable time. Since this multidisciplinary problem has multiple nonlinear

objective functions and constraints, sophisticated optimization algorithm is required for

solution.

In the present research, the load carrying member of the wing is idealized and

represented as a composite box beam. Each wall of the box beam is analyzed as a plate

using a refined higher-order displacement field. This structural modeling accurately

captures the transverse shear stresses through the thickness of each wall while satisfying

stress free boundary conditions on the inner and outer surfaces of the beam. The present

research extends the composite box beam model to include piezoelectric actuators bonded

to top and bottom surfaces. Detailed structural modeling issues associated with

piezoelectric actuation of composite structures are considered. The governing equations

of motion are solved using the finite element method to analyze practical wing

geometries.

For the aeroelastic stability analysis, both the classical V-g method and the Laplace

domain method are utilized. The V-g method gives accurate results at the flutter

boundary, but requires iterative solution. The Laplace domain method involves
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approximatinggeneralizedaerodynamicforces,but it producesroot-loci of the system

which give an insight into the physical phenomenaleadingto flutter/divergence. This

methodcanbe efficiently integratedwithin an optimizationprocedure. The steadyand

unsteadyaerodynamicforcesareobtainedusing linearizedaerodynamicpotentialtheory

for compressibleflows.

The Kreisselmeier-Steinhauser(K-S) function technique is used to efficiently

integrate the objective functions and constraintsinto a single envelop function for

multiobjective optimization with continuous design variables. The resulting

unconstrainedproblemis solvedusingtheBroyden-Fletcher-Goldberg-Shannoalgorithm

for nonlinearoptimization. The hybrid optimization method,though computationally

expensive,includescontinuousanddiscretedesignvariablessimultaneously.

The secondaryobjectiveof this work is to developa multidisciplinary optimization

procedurefor the designof turbomachineryblades. Aerodynamicand heat transfer

designobjectivesare integratedalongwith variousmechanicalconstraintson the blade

geometry. The bladegeometryis representedby Bezier-Bernsteinpolynomials,which

resultsin a relativelysmall numberof designvariablesfor the optimization. Thin shear

layer approximationof theNavier-Stokesequationis usedfor the viscousblade-to-blade

flow calculations. Grid generationis accomplishedby solvingPoissonequations. The

maximumandaveragebladetemperaturesareobtainedthroughafinite elementanalysis.

Total pressureand exit kinetic energylossesare minimized,with constraintson blade

temperaturesandgeometry.

Thespecificgoalsof thecurrentresearchareasfollows:
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Establish the significance of the refined higher-order displacement field on the

aeroelastic stability of composite wings. Study the effect of composite ply

orientations on flutter and divergence speeds.

o Extend the higher-order theory based composite box beam model to include

piezoelectric actuators bonded to top and bottom surfaces, considering detailed

structural modeling issues associated with piezoelectric actuation of composite

structures.

. Develop a multidisciplinary optimization procedure for the conceptual design of

composite aircraft wings incorporating accurate and efficient analysis methods

and multiobjective optimization technique. The optimization problem is

formulated with the objective of simultaneously minimizing wing weight and

maximizing its aerodynamic efficiency. Design variables include composite ply

orientations, ply thicknesses, wing sweep and piezoelectric actuator thickness.

Constraints are placed on the flutter/divergence dynamic pressure, wing root

stresses and the maximum electric field applied to the actuators.

. Develop of an accurate and computationally efficient optimization procedure for

integrated aerodynamic and heat transfer design of turbomachinery blades.



3. MDO Methodology for Smart Composite Wings

The multidisciplinary design optimization of smart composite wings involves the

coupling of structural mechanics (including smart material), aeroelasticity and

aerodynamics. For the developed MDO procedure to be applicable to practical problems,

the analysis and the optimization techniques must be computationally efficient and

sufficiently rigorous. These methods are described in the following sections.

3.1 Analysis

3.1.1 Structural Modeling

The load carrying member of the wing is represented as a single-celled rectangular

box beam with taper and sweep (Figures 1 and 2). Piezoelectric actuators are bonded to

top and bottom surfaces of the box beam.

Y

T
Root
chon

2

__X

ii:il)eference -a'X_Compositebox

Semi-span I

Figure 1. Wing planform
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Figure 2. Wing cross section

The box beam is modeled using composite laminates to represent the four walls

(Figure 3). The global coordinate system for the box beam is denoted (X, Y, Z) and the

local coordinate system for the i-th wall is denoted (xi, Yi, zi). The subscript 'i' is omitted

for convenience in the rest of the dissertation. For each of the individual walls of the box

beam, the inplane displacements are represented as cubic functions of the thickness

coordinate and the transverse displacement is assumed constant through the laminate

thickness. The higher-order displacement field [30] described in the local coordinate

system (Figure 3) is as follows.

u(x,y,z) = Uo(x,y) + Z_x (x, y) + Z2_x (x, y) + Z3_x(X,y)

v(x,y,z) = Vo(X, y) + zl.l/y (x,y) + Z2_y (x,y) + Z3_y (x, y)

w(x,y) = w 0 (x, y) (1)

where u 0 , v 0 and w 0 denote the displacements of a point (x, y) on the midplane and _ux

and _y represent the rotations of normals to the midplane about the y and x axes,

respectively. The higher-order terms _,x , _x, _,y and _y represent beam warping in each

plane.
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Figure 3. Smart box beam construction

The displacement field must satisfy the conditions that the transverse shear stresses,

(rxz and Cryz , vanish on the plate top and bottom surfaces.

h

Crxz(X,y,+-_) =0
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O'yz(X,y,_+t) = 0 (2)

where h is the plate thickness. For orthotropic composite plates, these conditions imply

that the corresponding strains be zero on the surfaces. This yields the following relations.

_x=0

_y =0

4 8w o
_x= -5-ff(---_ +Vx)

4 8w o

_y= -7(--_-- +Vy) (3)

The refined higher-order displacement field is now written as follows.

4z 3 8w 0

u =Uo+ZVx--_7(--_- +_x)

4z 3 aw 0

V =V0+Zq/y---_( @ +q/y) (4)

W= W 0

The functions u 0, v 0, w 0 , _x and _/y represent unknown functions of x and y. It is

important to note that the displacement field for the refined higher-order theory (Equation

(4)) has the same number of dependent variables as those used in the first-order shear

deformation theory (FSDT), although inplane displacements are cubic functions of the

thickness coordinate. By making substitutions,

__0
• x = _x 0x

aw° (5)



thefollowing modifiedform of thedisplacementfield is obtained.

u_-u0-z+z[1-4(z/ 1c3x [_ 3 \h} _x

v=v0-z°W°+z 1- 5 _ *yoy

W= W 0
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(6)

where d_x and by represent the additional rotations due to shear deformation about the y

and x axes, respectively. It should be noted that the displacement field for the classical

laminate theory can be obtained by setting _bx and _by , equal to zero in equation (6).

Since there are only six unique values of the stresses and the strains due to symmetry,

the following notation is used to define these quantities.

o" I

(Y2

(Y3

(Y4

(Y5

.u6

o'xX

(_yy

O'zz

o'y z

o'xZ

.O'xy

(7)

gl

_2

_33
i

g4

g5

):6

ig yy

ZZ ,

= 2_;yz [

2exz [
,2_xyJ

(8)

where x, y and z correspond to 1, 2 and 3 directions, respectively. Assuming small

displacements and rotations, a linear strain-displacement relationship is used.
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+_, 8 5 = _ e 6 =_+_
E4 -- 0Z 0y _Z + 0X' Oy 0x (9)

In the above equation, e I and g2 are inplane normal strains, g3 is transverse normal

strain, g4 and g5 are transverse shear strains and g6 is inplane shear strain. Using the

above strain-displacement relationships (Equation (9)) and the refined higher-order

displacement field (Equation (4)), the strains can be expressed in terms of midplane

displacements and curvatures as follows.

gi = go + zK:O + z3_:2

0 2
g2 = E2 + ZK7 + Z3K2

0 2 (10)g6 = g6 + ZK7 + Z3K6

g4 = gO + Z2K 2

g__-go+z_

where

<o__' ,<o_N' ,4- 3h_._+ _x_)

o o 4CO y
-- ' K2 -- ' K2 -- t--_-- +g2 Oy 0y 3h 2 0y 2 )

g0-0U0 +--CqV0 K0-- C3_X +0tlSy' <62 _-- 4 /0_@_x +0tlIY+202W0 /
0y c3x ' 0y 0x 3h 2 \oy c3x OxOy )

go OWo
-- +_ty,oy

g0 0w0- +q/x,
c3x

4 (0w o
K2 =-_-7_--_- + Vy)

4<2_
(ll)
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The generalizedHooke's law is used to relatethe stressesand the strains. For

laminatesmadeof orthotropicmaterials(with elasticsymmetryparallelto the 1-2plane)

theconstitutiverelation[70] iswrittenas

[QQ20if2----QI2 Q22 0 /]_21
if6 0 0 Q66 JIBE6)

[oQ44°II  lQ55_1 I.ssJ
(12)

where Qij, the plane-stress reduced elastic constants in the material axes of the laminate,

are related to the material engineering constants by the following equations.

E1 , QI2- vI2E2 , Q22- E2
Qll - 1- v12v21 1 -vi2v21 1- v12v21 (13)

Q44 =023, Q55 = 013, Q66=GI2

In the above equations, there are only five independent elastic constants. For laminates

consisting of multiple plies at different orientations, it is convenient to use the

transformed elastic coefficients [70] in the laminate coordinate system (x, y, z). After

transformation to the laminate coordinate system, the constitutive relations can be written

_1} [._11 Q12 l_2 =/712 Q22 Q26]]_2{

_6 LQI6 Q26 Q66J (_6"1

{;-:}:?44
Q45 Q55.J U35

as

(14)

where Qij are the transformed elastic constants.



Z_ w

_ piezoelectric

composite actuator
Y, v _ h/2 substructure

-h/2 piezoelectric
X, u actuator

27

J

Figure 4. Composite laminate with surface bonded piezoelectric actuator

The constitutive relation for any ply of piezoelectric material is written as follows

[481.

_i = Qij(_j - mj) (i, j = 1, 2, 6) (15)

where Aj is the induced strain due to piezoelectric actuation. Equation (15) is applicable

if the piezoelectric material thickness is small compared to the plate thickness (Figure 4).

The actuation strain vector Aj contains inplane normal and shear strain components, and

can be treated similar to thermal strain in the elasticity formulation. The induced strain is

used to control extension, bending or twisting of a laminate. Generally, an electric field

is applied through the thickness of the PZT used as an actuator. Also, the PZT materials

are isotropic and, therefore, its orientation has no effect on the material properties.

Denoting the thickness direction as '3', the induced strain for PZT material is obtained

from the following relation.

A2
A6

(16)
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In equation(16), E3 is the applied electric field and d31 is the mechanical-electrical

couplingcoefficientof thematerial. Theappliedelectricfield is obtainedby dividing the

appliedvoltageby thethicknessof thePZT layer. Themaximumappliedelectric field

mustbesmallerthanthecoercivefield to avoiddepolingthematerial.

In the 'equivalentsingle layer' approachof compositeanalysis [70], the laminate

stressresultantsareobtainedby integratingthe stressesthroughthethicknessasfollows.

Thestressesalsoincludeeffectsdueto piezoelectricactuation.

h/2

(Ni, Mi, Pi)= I_i_, z, z3)tz (i = 1,2, 6)
-h/2

h/2

(Q2, R2) = _4_, Z2) ]z
-h/2

h/2

(Q,, R,)= _5_, Z2)IZ
-h/2 (17)

The first three terms (N i, M i and Pi) are the inplane terms, which can be decomposed as

follows.

N i =NA-N p

M i= M A _ M P

Pi = pA _ pip

(i = 1, 2, 6) (18)

The first terms on the right hand side equation (18) (superscript 'A') represent the stress

resultants due to actual strain field, whereas the second terms (superscript 'P') represent

the resultants from piezoelectric actuation.

The stress resultants due to the actual strain field can be written in terms of the elastic

constants, Qij, and strains, _'j , as follows.
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h/2

(NA, M A, piA)= j Qij_i(],z, z3)z (i=1,2,6) (19)
-h/2

Substituting the expression for strains from equation (10), the plate constitutive relations

are expressed as follows.

- A _
N1,

N2_I
NA_

. 6;

M A

M A

M A
• 6

P1A

p2a
A

<P6

FA,,A,2A,6]VB,,B,2B,6lIE,,E,2E,61
/ A22 A26l[ B22 B26 l/ E22 E26 /

Lsym A66_[Lsym B66_JLsym E66_]

D,,D,2D,6IF,,F,2El61D22 D26 F22 F26/
/

sym D66 ALsym F66 _]

symmetric

Hll H12 HI6 1

H22 H261

sym H66]

_o
0

86

0
K 1

0
K 2

K60"

K_

2
K6 J

(20)

,tIA44_, = A55 D45 D_q_°
_2 _44F4,/<_
_-I Lsymmmetric F553 LK

(21)

where the plate stiffnesses are defined as follows.

6 ij, Bti. Dij, Eij, Fij, Hij)=

ht2

j" Q(1 23 4 Z6 )ij , Z,Z ,Z ,Z , Z
-h/2

h/2

(aij, Dij, Fij): J" Qij(], z2, z4) z (i,j= 4,5)
-h/2

(i,j = 1,2,6) (22)

(23)

The stress resultants due to piezoelectric actuation can be similarly defined as follows.
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h/2

(_, M_,PIP)--S_,jA_,z,z_)_ 0--1,Z6> _24>
-h/2

where the stiffness matrix, Qij, includes the elastic constants of the piezoelectric material

only. Using the stiffness matrices for the PZT material, the stress resultants can be

expressed as

NP=

N p

N2P

.N6p

M p

M p

.M P

p,P]

pP_

p_'J

A,,A,2A,6lIB,,B,2B,6lIE,,El2E,o]A22A26/1B22 B26// _22E26/

Lsym A 663Lsym B66 JLsym E66_]

symmetric 0

IA, I

,0}_0

tO

{0

_0

l0

(25)

where the PZT stiffness matrices are given by the following equation.

h/2

(Aij, Bij. Eij)= _ Qij_,z, z3)tz (i,j=1,2,6) (26)
-h/2

The box beam equations of motion are derived using the Hamilton's principle [24]

which assumes the following form, in the absence of any nonconservative forces.

t2

8 _[K -(V + U)]dt = 0 (27)
tl

where 6 represents the variation and K is the kinetic energy, V is the potential energy due

to external forces, U is the strain energy and tl and t2 are initial and final times,
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individual wall (plate)quantitiesasfollows.

t2FN - ui t=o

31

Using variational principles, equation (27) may be written in terms of the

(28)

where N is the total number of walls (N=4 for a box beam). The variations of the elastic

strain energy, the potential energy and the kinetic energy, in each plate, are written as

follows.

8U=
h/2

J" I ((yl(_[;l + o'2(_ 2 + O'4(_ 4 + _5(_g5 + o'66g6):]Adz
-h/2A

8V = I p(x,y)SwdA
A

5K= 5h/2 (i_ 2 _- y _p +_+ Adz (29)
2 -h/ZA

where (.) denotes differentiation with respect to time, A is the plate area, p is the

material density and p(x,y) is the distributed load. Substitution of equation (29) into

equation (28), integration and collection of the coefficients of various terms, yields the

following equations of motion.

rr

8u" 8NIo---X-+ 0N60y = II_r+ I2_ _ 3__i44 0_X

8v " 8N6&x+ 0N20y = I1@+ i2_ ___i44 8#8y

..4_4(0R1 0R2] +_____4( 3_.._ + 2 02P6 02P2/8w- 0QI+0Q2 +p - + +
aX 0y h 2 _. CgX _y ) 3h2L 0x 2 0ycgx @2 )

:Ii_-_h 2" (02_ c32v_.'/+-_4 I4[_+_+--_I5(_x+0(_'7_'_+-_ -'f) 3h 2 3h \ 0x
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---QI +_2 R!---_4 (c3P1 0P6/ ...... 4 c_3h2_, c3x +--_-y ) = I21]if'+I3i_lfx i53h 2 "_x

.(30)

4 4.._ (c3P 6 c3P2 / = _ 2tier+ _3 q_y 4 c3_
Q2 +h-2-R2- 3h2 _, c3x +--_y J 3_12i5 0y

where the stress resultants N i, M i, Pi, Qi and R i are as defined in equation (18) and the

inertia terms are defined as

(I1, I2, I3, I4,I5, I7)=

h/2

I
-h/2

2 4 6), Z,Z ,Z ,Z ,Z Z

4

]2 = I2 -'_I4

16
8 i5 7

]3 = I3-3h 2 +'-_I (31)

For the solution of the equations of motion, appropriate natural or essential boundary

conditions [70] needs to be specified.

The finite element method is well suited to solve the above equations of motion,

accounting for discontinuities in the material properties and complex geometry. The

discretized equations of motion are obtained using a two-dimensional finite element

formulation in the local coordinate system of each individual wall. To maintain

continuity of displacements and to ensure that the walls remain normal to each other after

deformation, appropriate constraints are imposed on displacements and rotations of

individual walls at the four comers of the box beam cross section (Figure 3). A four

noded plate element is used with 11 degrees of freedom per node. This element is C 1

continuous in the zeroth order displacements (u 0, v 0 and w 0 ) and C O continuous in the



higher-orderterms (_x

follows.

and q_y).
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The nodaldegreeof freedomvector is defined as

OU 0 0U 0 0V 0 C3V0 C3W 00W 0 / T

3

q = u°' 0x' 0y 'v°' c3x'_ 'w°' _ ,--_y,_X,g'yJ (32)

Using shape functions, each of the unknowns is interpolated over the element as follows.

n

ue(x,y) = _N_(x,y)q e (33)
i=l

where n is the number of nodes (n=4), N _ is the shape function and superscript 'e' denotes

elemental representation. Bilinear shape functions are used for u 0, v 0, _x and _y,

whereas a 12 term cubic polynomial is used for the transverse displacement w 0 . The

variations of kinetic, strain and potential energies, in terms of the elemental quantities, are

obtained and the elemental matrices are assembled leading to the following equations of

motion.

rp

M_f+ Kq = f + Fp (34)

where the global mass and stiffness matrices are given by

 F, sys v7M=Z
i=lkV J

K = B BdV
i =ILV J

(35)

(36)

and the force vectors are as follows.

4 [I NTp(x,Yf = _ )da
i= 1LA

(37)



Fp = _ NTNPdA
i =ILA

34

(38)

In equations (35) to (38), the summation is performed over walls 1 through 4 (number of

walls=4 for a box beam) and V and A represent volume and surface areas; respectively.

The material density is denoted p and p(x,y) is the distributed load (such as, aerodynamic

pressure). The matrix Q is the material stiffness matrix and matrices B and S relate the

nodal degree of freedom vector to strains and displacements, respectively. The term N T

denotes transpose of the shape functions, N p is the stress resultant due to piezoelectric

actuators and Fp is the corresponding force vector. Since the accurate prediction of

structural damping is difficult, it is ignored in the present analysis. Also, its effect is

usually small on aeroelastic stability and ignoring it generally leads to conservative

results [34].

3.1.2 Aeroelastic Analysis

The objective of the aeroelastic analysis is to obtain velocity and atmospheric density

or altitude where the aeroelastic system is neutrally stable. The V-g (velocity - damping)

method of flutter prediction [33] is the classical method which has been extensively used

over the past decades. It assumes that the aeroelastic system performs a simple harmonic

motion and uses the purely oscillatory air loads. Since these assumptions are valid at the

flutter condition, this method yields accurate results for flutter boundary.

V-g method

The equations of motion for the wing structural-aerodynamic system is solved with

the aeroelastic forces represented by the force vector f. Assuming simple harmonic
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motion,wing elasticdeformationandaeroelasticforcesarerepresentedby q = qe imt and

f = i'e imt , respectively. Substituting the above into equation (34) yields

(-m2M + K)_ = ? (39)

where the stiffness term, K, now also includes the piezoelectric actuation effects. The

unsteady aerodynamic force, f, can be expressed as a linear combination of _ as follows.

? = q_F(im)_ (40)

where F(im) is the aerodynamic influence coefficient and %0 denotes freestream

dynamic pressure. Substituting for f in equation (40) results in the following equation.

(-m2M + K- qooF(im))_ = 0 (41)

Equation (41) represents an eigenvalue problem and the solution of the

determinant

following

-m2M + K- qooF(im) = 0 (42)

provides the roots which determine the stability of the system. To solve the above

problem, artificial damping, g, is introduced and equation (42) is rewritten as

_ 2 M + (1 + ig)K - %oF(iml= 0 (43)

The problem size for flutter solution can be reduced by using the modal approach. It

is well known that only the low frequency modes govern wing flutter characteristics and

the high frequency modes have little effect on the flutter solution [33]. Using the first

several low frequency modes, equation (43) is transformed into modal coordinates and is

rewritten as follows.
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-o2M * + (1 + ig)K* - qmF*(iml= 0 (44)

where M , K and F are the generalized mass, stiffness and aerodynamic influence

coefficient, respectively. The generalized aerodynamic forces are computed using the

constant-pressure lifting surface method [32] at a given Mach number for specified values

of the reduced frequency k, assuming simple harmonic motion. This method is based on

the linearized aerodynamic potential theory [33]. The lifting surface is divided into small

trapezoidal panels, with unknown constant pressure, arranged in strips parallel to the

freestream. The downwash boundary condition calculated from the deflection of

structural modes is satisfied at mid-span three-quarter chord point of each panel. The

procedure is implemented in the 'ZONA6' computer code [71] which is used in the

present research. The solution of equation (44) yields the variations of damping and

frequency with respect to the freestream velocity. At the flutter point, the artificial

damping, g =0.

Laplace domain method

The V-g method gives accurate results at the flutter point, but it does not generate

reliable frequency and damping histories since the assumed harmonic motion is not valid

at other conditions. Also, this method requires iterative calculations to arrive at the

'matched flutter point', which poses difficulty in using it within an optimization

procedure. The Laplace domain method of flutter analysis [34] produces valid damping

and frequency history and, thereby, affords an insight into the physical phenomena

leading to flutter. This method is non-iterative and suitable for automated optimization

procedures. However, the Laplace domain method requires the air loads for arbitrary

motions. Since aerodynamic calculations are well developed only for simple harmonic
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motions,approximationsarenecessaryto defineair loads. Theseapproximationsreduce

theaccuracyof flutter prediction,but themethodis still very useful.

Laplacetransformationof the governingequationof motion (Equation (34)) yields

thefollowing.

(s2M+ K)q(s) = f(s) (45)

wheres denotesthecomplexLaplacevariable.Theaeroelasticloadf(s) canbeexpressed

asalinearcombinationof q(s)asfollows.

f(s) = q_F(p)q(s) (46)

where p is the nondimensionalizedLaplacevariableand F(p) can be regardedas the

aerodynamictransferfunction. Substitutingfor q(s) in equation(45)gives

(s2M+ K - q_F(p))q(s) = 0 (47)

Equation(47)canbetransformedinto modalcoordinatesandrewritten,usingseverallow

frequencymodesasfollows.

(sZM* + K* - qoeF*(p))_(s)= 0 (48)

where M, K and F are the generalizedmass, stiffness and aerodynamicforces

respectivelyand_(s) denotesthegeneralizedcoordinate.

Theunsteadyaerodynamicforcesareobtainedassumingsimpleharmonicmotion [32,

71] similar to theV-g flutter calculations.However,F (p) containstranscendentalterms

whenexpressedasafunctionin theLaplacedomain. To obtainafinite numberof terms,

the aerodynamic forces are approximated by a rational function of the
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approximating function for F (p) is expressed as
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of [35-36], the

n

l_(p) = A 0 +AlP +A2P 2 + Z(AI+2) p (49)
l=l P+ bl

where n is the number of partial fractions (order of fit). The partial fractions approximate

the time delays inherent in unsteady aerodynamics [36]. The denominator coefficients b l

in equation (49) are selected from the range of reduced frequencies for which unsteady

aerodynamic forces are computed. Substituting ik for p along the imaginary axis, the

coefficients, A 0, A l, etc. are computed from the available generalized forces such that

the approximation error is minimized in the least-squares sense. Substituting equation

(49) into equation (48), the equations of motion are reduced to a series of 6N first-order

equations [36] of the form

sX = AX (50)

where N is the number of normal modes used. The eigenvalues of matrix A provide the

roots of the flutter equation. For stability of the system, all real roots should be negative.

At flutter condition, one of the roots is purely imaginary. The above procedure is

implemented in the computer code 'Interaction Structures, Aerodynamics, and Controls'

(ISAC) [72] and is used for flutter analysis in this research.

3.1.3 Aerodynamic Analysis

Lift and drag for the wing are calculated to define its aerodynamic efficiency (lift-to-

drag ratio). The constant-pressure lifting surface method [32, 71], used for unsteady

aerodynamic calculations, can also predict steady normal forces with the value of the

reduced frequency being set to zero. Induced drag and lift are obtained by resolving the
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normal force alongthe freestreamandthe directionperpendicularto it. The other two

componentsof wing drag at high subsonicor transonicMach numbersinclude skin-

friction dragandcompressibility(wave)drag.

Theskin-frictiondragarisesfromtheviscouseffectsin themostlyturbulentboundary

layeradjacentto thewing surface.First,a flat-plateskin-frictiondragcoefficient(Cf) is

calculated,which is multiplied by a 'form factor' (FF) to account for the viscous

separationeffects. The flat-plate skin-friction coefficient dependsupon the Reynolds

number,theMachnumberandtheskinroughness.For turbulentflow, which is generally

the case at high subsonicor transonic Mach numbers, the flat-plate skin-friction

coefficientis determinedusingtheSchlichtingempiricalformula,correctedto includethe

Machnumbereffect [40], asfollows.

0.455
Cf = (l°gl 0R)258(1+ 0.144M2)0.65 (51 )

where M is the Mach number and the Reynolds number (R) is defined by

R = pVglp. (52)

where p is the atmospheric density, V is the velocity, g is the mean aerodynamic chord

length and la is the coefficient of viscosity. For relatively rough surfaces, the friction

coefficient is higher. Therefore, a 'cut-off Reynolds number' is determined using the

mean aerodynamic chord, g, and a surface roughness parameter, _c.

Rcut_of f = 44.62(g/K) 1"053M 1.16 (53)

The lower of the cut-off Reynolds number and the actual Reynolds number is used in

equation (5 !). The form factor for the wing is obtained as follows.
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FF= l+(x/C)m c +100 .34M°'I8(cosAm (54)

where (x/C)m denotesthe chordwiselocationof the airfoil maximumthicknesspoint,

(t) is the airfoil thicknessto chord ratio and A m refers to sweepof the maximum

thickness line. The skin-friction drag coefficient can now be

following equation.

calculated from the

Cf FF Sw¢t (55)
C Dskin _ friction -- S ref

where

Sre f 7
> 0.05 (56)

represents the ratio of 'wetted area' to 'reference area'.

The compressibility drag refers to the pressure drag resulting from increase in Mach

number above low subsonic value. At high subsonic (or higher) Mach numbers, the local

velocities on the upper surface of the wing may become sonic or even supersonic. This

may lead to shock formation on the top of the wing which increases drag due to reduction

in the total pressure through shock waves. Drag may also increase due to thickening or

separation of the boundary layer as a result of the severe adverse pressure gradient caused

by the presence of shocks. An empirical method, called the 'crest-critical Mach number

method' [41 ], has been used in this research to obtain the compressibility drag. The 'crest'

is the point on the airfoil upper surface to which the freestream is tangent. In this

method, the freestream Mach number which gives sonic flow at or behind the crest of the

airfoil is first determined. The crest-critical Mach number is a function of airfoil

thickness-to-chord ratio, lift coefficient and wing sweep. At a Mach number 2 - 4 percent
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(dependingon wing sweepbackangle)higher than the crest-criticalMach number,the

drag risesabruptly. This Mach number is called the 'drag divergence Mach number',

which can be determined from the crest-critical Mach number. The compressibility drag

coefficient is then calculated using the ratio of freestream Mach number to the crest-

critical Mach number and empirical data (based on existing transport aircraft) for the

increment in drag.

3.2 Optimization Technique

The optimization techniques described next are suitable for multiobjective

optimization with objective function/constraint approximation and continuous/discrete

design variables.

3.2.1 K-S Function Approach

The K-S function technique [16] is used to efficiently integrate the objective function

and constraints into a single envelop function. The resulting unconstrained nonlinear

optimization problem is solved using the Broyden-Fletcher-Goldberg-Shanno (BFGS)

algorithm [14]. The derivatives of the objective functions and the constraints, with

respect to the design variables, are calculated using the forward finite difference

technique.

Using the K-S approach, each of the original objective functions is transformed into

reduced objective functions as follows.

Fi*(_ ) - Fi(q_) 1.0-gmax < 0, i=I,...,NOBJ (57)
Fi0
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whereFi° is thevalueof theoriginal objectivefunction F i calculated at the beginning of

the cycle, • is the design variable vector and gmax is the value of the largest constraint

and is held constant during each cycle. It is assumed that the constraints gj (_) (j = 1, 2,

•.- , NC) are scaled to lie between -1 and 1. The reduced objective functions are

analogous to constraints. A new constraint vector fm (_) (m--I,.., M where M = NC +

NOB J) is defined by combining the original constraints and the reduced objective

functions. The new objective function is defined as follows.

M

FKS(_) = fmax +ll°ge _eO(fm(q_)-fmax) (58)
O m--I

where fmax is the maximum value of fro(O) and remains constant during the

optimization cycle. The scalar multiplier 9 is similar to draw-down factor of penalty

function methods. Larger values of p move the K-S function curve closer to the largest

constraint [14]. The initial value of this parameter is user supplied and its value is

increased as the optimization proceeds. The new objective function FKs(_ ) , which

represents an envelope function representing the original objective functions and

constraints, can now be minimized using any unconstrained optimization technique. In

this research, the search direction vector is obtained using the Broyden-Fletcher-

Goldberg-Shanno (BFGS) algorithm which is a quasi-Newton technique [14]. This is

followed by a one-dimensional search for the minimum of the K-S function using the

three point quadratic approximation for step length calculation [ 14].

3.2.2 Approximation Technique

During the one-dimensional search to minimize the composite K-S function, several

evaluations of the objective functions and constraints are necessary. It is computationally

expensive to carry out exact analysis all the time. Therefore, an approximation technique
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is usedto provideobjective function and constraintvaluesduring the one-dimensional

minimization. Thetwo-pointapproximationtechnique[18], which hasbeenfound to be

well suited for nonlinearoptimization problems,is applied. This techniqueusesthe

gradientinformationfrom thepreviousandcurrentdesigncyclesto obtainthe exponent

usedin theexpansion.Thetechniqueis formulatedasfollows.

I_(cD)--F(*O)+ 51 _0n -1.0 _On 8FPn 8--_n (00) (59)

where t?(cI)) is the approximation to the objective function F((I)) at a neighboring design

point • (vector of qbn design variables) based on its values and gradients at the current

design point (1)0 and the previous design point _l. The exponent Pn, considered as a

'goodness of fit' parameter, explicitly determines the trade-offs between traditional and

reciprocal Taylor series expansions. In the limiting case of Pn = 1, the expansion is the

first order Taylor series, and when Pn = -1, the two-point exponential approximation

reduces to the reciprocal expansion form. The exponent Pn is obtained from the

following equation.

Pn =
l°ge {_1. }- 1Oge {_0. }

+ 1.0 (60)

The exponent Pn is defined to lie between +1 and -1. If any singularity is encountered,

the exponent is set to +1 to obtain linear Taylor series expansion. A similar

approximation is obtained for the constraint vector too.

3.2.3 Hybrid Optimization



44

The inclusion of both continuous and discrete design variables significantly

complicates the optimization problem. This is because the discrete design variables are

not compatible with traditional gradient based optimization methods. Similarly, the

continuous variables are not compatible with combinatorial optimization methods, such

as branch and bound techniques, which require discrete values to operate. Therefore, a

hybrid optimization technique developed by Seeley and Chattopadhyay [19] which

combines both types of design variables is used.

The general continuous/discrete optimization problem can be mathematically stated

as follows.

Minimize f(_c,_d)

Subject to g(*c,q)d)j _<0 (j = l, 2,..., NCON)

(61)

(62)

Side constraints _c_ < _c < _Cu

(I) d _ [(I)lq , (I)2q , (I)3q ,...,(I)dq ] (63)

where f is the objective function, gj are the constraints, _c are the continuous design

variables and qbd are the discrete design variables which can be selected from among a

set of q preselected values. The hybrid optimization procedure is based on Simulated

Annealing (SA) [73] where the design space is sampled by repeatedly perturbing the

discrete design variables. At each iteration of the SA procedure, the objective function is

minimized with respect to the continuous variables using a BFGS search algorithm [14].

This significantly improves the efficiency of the hybrid algorithm by directing the search

using the gradient information when available. The constrained problem is formulated

using a penalty function approach [14].



4. MDO Applications for Smart Composite Wings

The analysis techniques and optimization methods described in the preceding chapter

have been applied to the design of a composite wing, with and without smart materials

[74-80]. The aeroelastic stability of composite wings was investigated using the V-g

method in [74-75] and the Laplace domain method in [76]. A hybrid optimization

technique (combining both continuous and discrete design variables) was adopted for the

wing designs investigated in [77-78]. Multidisciplinary optimizations of business jet type

composite wing and smart composite wing are reported in [79] and [80], respectively.

These applications, from the current research, are presented in the following sections.

4.1 Aeroelastic Stability Using Higher-Order Laminate Theory

First, it is necessary to investigate the effect of higher-order theory on aeroelastic

stability of composite wings. To demonstrate this, aeroelastic analysis is performed for a

simple scaled wing model shown in Figure 5. The wing semi-span and root chord are 90

and 20 inch, respectively. The aspect ratio and the taper ratio of the wing are 12 and 0.5,

respectively, and the mid-chord is unswept. It is assumed that the box beam is the

principal load-carrying member of the wing which extends through the entire semi-span

and is fixed at the root. The width and the height of the box beam are assumed to be 50

and 10 percent of the local wing chord; respectively. The center of the beam coincides

with the mid-chord of the wing. Each wall of the box beam is made up of eight

unidirectional composite laminates (each consisting of several plies with identical

orientation), which are symmetric about the mid-surface. The composite material (Gr-Ep

T300) properties are listed in Table 1 [81]. The material density is multiplied by a factor

of eight to account for the non-structural mass of the wing. The walls have a uniform

spanwise thickness of 0.80 inch. The top and the bottom walls have (0/90/30/30)s lay-up,



while the vertical wall ply anglesare (45/-45/45/-45)s.

angleis indicatedin Figure5.
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The direction of positive ply

T
10"

L
D×

90"

Figure 5. Wing planform for aeroelastic stability analysis

Table 1. Material properties (Gr-Ep T300)

E L (msi) 19.00

ET(msi) 1.50

GLT(msi) 1.00

GTT(msi) 0.90

VLT 0.22

p (slugs/in 3) 1.68* 10 -3

The structural analysis of the box beam is performed with 15 elements spanwise and a

single element chordwise. The structural degrees of freedom for the box beam are 664

and 844 using the CLT and the present approach, respectively. The first ten normal

modes of vibration are used in the subsequent analysis and the natural frequencies are

presented in Table 2. Although, bending-torsion coupling exists due to the ply
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orientations used, for identification purposesonly the dominant mode shapesare

indicatedin Table 2. Table2 showsthat the naturalfrequenciesof the beambending

modes(Bl, B2, B3, B4 and B5) are somewhathigher for the CLT comparedto the

presentapproach.Thetorsionalmode(T1) exhibits the largestdifferencein the natural

frequency(aboutthreehertz),the CLT valuebeinghigheragain. This is dueto the fact

that the transverseshearstressesare ignoredby the CLT, but areefficiently modeledin

thepresentapproach.Thefrequenciesof thechordwisebendingmodes(C1, C2, C3and

C4),which arenot usedin theflutter analysis,areidenticalusingboth theories.

Table2. Natural frequency(Hz) andmodes

Mode Mode Higher-order Classical

Number Type Theory Theory

1 B1 5.34 5.37

2 C1 18.17 18.17

3 B2 27.75 27.94

4 B3 71.42 71.99

5 C2 84.07 84.07

6 B4 130.71 132.36

7 T1 134.43 137.23

8 C3 202.32 202.32

9 B5 205.75 207.70

10 C4 256.42 256.42

Legend: B- Beam bending, C- Chordwise bending, T- Torsion

Mode shapes for the first beam bending (Mode 1) and the first torsion (Mode 7) are

presented in Figures 6 and 7 for the CLT and Figures 8 and 9 for the present theory. The
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modeshapesarenormalizedsuchthat the generalizedmassequalsunity. Mode 1 is a

purebeambendingmode,whereasMode7 isa coupledfourthbending/firsttorsionmode

in bothcases.Thesetwo modesareselectedfor comparisonbecauseof their contribution

in wing flutter as will be shown later. The response of Mode 1 is nearly identical (as are

the natural frequencies, see Table 2) using both theories, but differences are observed in

Mode 7. The present approach shows somewhat higher bending displacements in this

mode, whereas the torsional displacements are slightly lower compared to CLT.

2.5
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Figure 6. Bending mode shape (CLT)
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Figure 9. Torsional mode shape (present theory)
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The generalizedaerodynamicforcesarecomputedat M=0.95 with the wing divided

into 48 panels. Flutter solution is obtainedusingthe V-g methodfor variousvaluesof

theatmosphericdensity(aninput parameter)till the flutter speedandthe air speedmatch

eachother('matchedflutter point'). Theflutter results,in termsof variationsof frequency

anddampingwith airspeed,arepresentedin Figures10and 11usingboth CLT andthe

presentapproach.

N
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Figure 10. Frequency vs. Airspeed

Flutter is often caused by the coupled bending and torsional motion of aircraft wings,

wherein the frequencies of these two modes come close or coalesce around the critical

flutter speed and the damping of either of the modes goes to zero [82]. Figure 10 shows

the tendency of the first bending (Mode 1) and the first torsion (Mode 7) modes to get

close to each other. For the present approach, the separation between the two frequencies

is smaller and the tendency to come close is more pronounced compared to the CLT.
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Figure 11. Damping vs. Airspeed

As a result, the damping of one of the modes (Mode 1) becomes zero at lower airspeed, as

predicted by the present approach (Figure 11). The flutter speeds, using the present

approach and the CLT, are 455 and 503 KEAS, respectively. This significant difference

in flutter speed of 48 KEAS (about 10 percent) is very critical. Further, it is important to

note that the CLT results are nonconservative. This establishes the need for using refined

structural modeling techniques since flutter is a catastrophic phenomenon.

4.2 Effects of Ply Orientations on Aeroelastic Stability

To study the effects of elastic couplings on aeroelastic stabilty of composite wings,

various ply orientations are investigated. The wing geometry is the same as in the

previous section (Figure 5), with the exception that the walls now have an uniform
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spanwisethicknessof 0.16 inch and non-structuralmassesare not included in the

analysis.

Threetypesof ply lay-ups,(0/90/0/90)s,(0/90/30/30)sand(0/90/-30/-30)s,areused

for the top and the bottom flangesof the wing. The vertical webshave the cross-ply

orientationsof (0/90/0/90)sin all cases. For the cross-ply lay-up there is no elastic

coupling,whereasthe(0/90/30/30)sorientationdisplaysnegativebending-twistcoupling,

that is, upwardbendingcausesnosedowntwist. The stackingsequence(0/90/-30/-30)s

displayspositivebending-twistcoupling,thatis, upwardbendinggeneratesnoseup twist.

The structuralanalysisof the box beamis performedwith 10elementsspanwiseand a

single elementchordwise. The first six normal modes of vibration are used in the

subsequentanalysis.Thenaturalfrequenciesandtheassociatedmodesarelisted in Table

3. The first, third and fourth modes are beam bending modesand the fifth mode

representsthe first torsion mode in all cases. The secondand the sixth modesare

chordwisebendingmodesfor (0/90/30/30)sand (0/90/-30/-30)sorientations. For the

cross-plycase,thesecondmodeis achordwisebendingmode,whereasthesixth modeis

a torsionmode.

Table3. Naturalfrequency(rad/sec)andmodesfor differentply lay-ups

Mode (0/90/0/90)s (0/90/-30/-30)s (0/90/30/30)s

1 75,B 66,B 66,B

2 289,C 269,C 269,C

3 331,B 309,B 309,B

4 761,B 738,B 738,B

5 875,T 1028,T 1028,T

6 1134,T 1195,C 1195,C



Legend:B- Beambending,T- Torsion,C- Chordwisebending
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Thegeneralizedaerodynamicforcesarecomputedat M=0.8 for valuesof the reduced

frequencybetween0 and 1. The wing is divided into 48 panels. The Laplacedomain

method is used in the flutter calculations. Rational function approximationof the

generalizedaerodynamicforces (tabular data) is performedusing four denominator

coefficients.Thesecoefficientsareselectedto be0.2,0.4,0.6and0.8andproducea very

good fit. Figures12-15showa comparisonof the tabulardatawith s-planefit for real

and imaginary partsof the two of the aerodynamicinfluence coefficients,F(1,1) and

F(2,2). Thesecomparisonsaretypical of therestof thecoefficients. The approximation

error for the aerodynamicforcesis generallylessthanonepercentand it neverexceeds

six percent. Total least-squareerror for the rationalfunction approximationequals0.36

percent.
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The eigenvalues of the characteristic equation vary with dynamic pressure. A root

locus constructed by varying the altitude for a given Mach number gives flutter dynamic

pressure when one of the real roots becomes zero and the imaginary root is non-zero.

Divergence is indicated when both the real and the imaginary roots of any one mode

reduce to zero. The variations of frequency and damping with dynamic pressure provide

an insight into flutter and divergence onset. Figures 16-24 show the dynamic pressure

root locus, frequency history and damping history for the three different ply lay-ups.
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The cross-ply lay-up wing with (0/90/0/90)s ply orientation flutters at 4.88 psi when

the frequencies of the first and the fifth modes come close and the damping of the first

mode becomes zero (Figures 16-18). This lay-up has uncoupled elastic modes and the

fifth mode is the first torsion mode for this wing. The wing with (0/90/-30/-30)s ply

orientation does not show flutter, but due to a positive bending-twist coupling, it is prone

to divergence. As the flight dynamic pressure increases, the frequency and the damping

of the first bending mode reduce to zero at 2.66 psi (Figures 19-21). For the wing with

(0/90/30/30)s ply angles, flutter or divergence is not encountered at the Mach number

investigated (Figures 22-24). As mentioned earlier, this lay-up has negative bending-

twist coupling which prevents divergence. Similar trends for the effects of ply orientation

on flutter and divergence have been observed by other researchers [83].
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4.3 Application of Hybrid Optimization Technique

The hybrid optimization technique has been applied in the continuous/discrete design

variable optimization of a composite wing. The wing weight is used as objective function

which is minimized with constraints on flutter/divergence speed and stresses at the wing

root due to the specified air loads. Wing root chord and wall thickness are used as

continuous design variables, whereas the ply orientations are treated as discrete variables.

4.3.1 Optimization Problem

The wing geometry, for this optimization problem, has unswept mid-chord (similar to

Figure 5), an aspect ratio of 20 and a taper ratio of 0.5. The root chord is varied during

the optimization and consequently, the wing span and area also vary. The objective is to

minimize the weight of the box beam which represents the structural member in the wing.

Therefore, in the optimization problem,

f: W (64)

where W is the weight of the box beam. The weight of the remaining components in the

wing, such as the skin, is not considered in this work. Constraints are placed on the

flutter speed and the maximum allowable stresses. The flutter/divergence speed (Vf) is

constrained to be greater than 450 knots equivalent air speed (KEAS) at a flight condition

of Mach=0.7 at sea level. This constraint is expressed as follows.

gl = 1 - V__£_f< 0 (65)
450
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The Tsai-Wu failure criterion [84] is imposedon the critical ply stressesat the root

sectionwherematerial failure is most likely to occur. The criterion statesthat failure

initiateswhenthefollowing inequalityis violated.

Fc = Fi_ i +FijcYi(_ j _< 1 (i,j = 1,2,...,6) (66)

where (Yi represents stresses in the material coordinate system and Fi and Fij are related

to the tensile and compressive yield strengths of the material (Table 4). This constraint is

expressed as follows.

g2--Fc-1 <0 (67)

The static lift and drag are computed empirically [40] for the above flight condition at an

angle of attack of 3.5 °. This results in a lift force of 2350 lb and a drag force of 110 lb for

the reference wing. This load is assumed to remain constant during the optimization.

The spanwise load distribution is assumed to be elliptical over the wing planform. The

root chord (Cr) is defined as a continuous design variable as follows.

Cr ----_)1 |5"_ _l -< 25" (68)

where the upper and lower bounds are also indicated above. The actual dimensions of the

wing, such as the semi-span (s), the tip chord (ct) and the wing area (A) are all computed

from Cr so as to retain the aspect ratio and the taper ratio values mentioned earlier. The

box beam is constructed from Carbon-PEEK composite material [81]. Material

properties are presented in Table 4.
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Thebox beamwallsareassumedto bemadeof severalunidirectionalcompositeplies

with thicknesstp=0.005''. ThequantityN, whichdenotesthenumberof two-ply layersin

eachlaminate,is anintegervalueandis definedasadiscretevariable

N = _)2 (69)

where _2 = [4,5,6,..,14]. The box beam wall thickness, h, is then determined as

h = 2Ntp (70)

where it is assumed that all four walls have the same thickness. Therefore, the total

number of plies in each wall is 8 < 2N < 28 and h ranges between values of 0.04" < h <

0.14".

Table 4. Material properties (Carbon-PEEK)

EL (msi) 19.40

ET(msi) 1.29

GLT(msi) 0.74

GTT(msi) 0.50

gLT 0.28

density 1.8xl 0 -3

(slug/inch 3)

Ultimate Strengths

XY(ksi) 309.0

XC(ksi) 160.0

YY(ksi) 11.6

YC(ksi) 29.0

S(ksi) 23.2
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Four designvariables (dp3,_b4,_5,_b6) are used to describe the stacking sequence in

each of the box beam walls as follows.

Top wall [01/02] N = [_3/_4]N

Bottom wall [0 t/02] N = [-_b 3/-_b4] N

Left side wall [01/02] N = [_bs/d_6] N

Right side wall [01/02] N = [-_b 5/- _b6]N

where the material axes for the plies in each wall are referenced to their respective local

coordinate systems (Figure 3). In the global coordinate system, the top and the bottom

walls have the same ply angles, as is the case for the two side walls. The ply angles are

allowed to vary from within a range of pre-selected values _bd=[-45 °, 0 °, 45 °, 90°]. All

four walls are assumed to have the same thickness, which does not vary along the span or

the chord.

4.3.2 Results and Discussions

Results obtained using the hybrid optimization procedure are presented in Table 5 and

in Figures 25-28. Optimization results are compared with a reference design, which is

selected based on engineering judgment. It should be noted that the optimum design is

independent of the initial design due to the probabilistic nature of the hybrid optimization

procedure. The penalty function optimization iteration history is presented in Figure 25

at each iteration of the simulated annealing algorithm which consists of several BFGS

evaluations. Both the trial designs and the best design obtained are presented.
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Table5 Hybridoptimizationresults

Reference Optimum

Numberof plies

Rootchord(in.)

Wall thickness(in)

Stackingsequence

top andbottomwalls
sidewalls

Natural frequency(hz)

Flutterpoint

28 18

15.0 15.4

0.14 0.09

[0°/90°]14
[45°/-45°]14

9.4,34.1,50.7,116.9,

154.7,163.6

29hz,2ndmode

[0°/-45°]9

[0o/00]9

8.75,34.7,46.8,107.7,

159.5,170.1

74hz, 5thmode
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Figure 25. Penalty function iteration history
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Initially, the flutter constraint is violated which results in very large values of the penalty

function which are not presented due to the scale of the graph. Due to heuristic nature of

the optimization algorithm, a large number of function evaluations are required which

make it computationally expensive. The optimum state is reached in less than 100

iterations and the optimization procedure is terminated after 250 iterations since no better

design could be found. There is a significant reduction in the weight of the structural

member of the wing (32 percent, Figure 26) along with a large improvement in the flutter

speed (75 percent, Figure 27) due to the optimization. The Tsai-Wu stress criterion is

satisfied by the reference as well as the optimal design (Figure 28). Since the wing root

chord for the reference and the optimal wings are nearly same (Table 5), weight reduction

is due to the fewer number of plies in the optimal wing. Through optimization of the

stacking sequence, even a lower wall thickness provides higher flutter speed.
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Study of the frequencies and modes for flutter show important trends (Table 6). For

the reference wing, the second mode, which is a coupled bending and lag mode with a

natural frequency of 34 Hz, flutters at 29 Hz. The first torsion mode is the sixth mode

with a natural frequency of 164 Hz. At the flutter condition, the frequencies of the

second and the sixth modes almost coalesce and the sixth mode also flutters at a slightly

higher speed. For the optimal wing, flutter occurs at the fifth mode (at 74 Hz), which is

the first torsion mode with the natural frequency of 160 Hz. The first four modes are



bending or coupled bending/lagmodes.

bendingmodesto increase the flutter speed.

Thus
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optimization essentially stiffens the

Since the aspect ratio and taper ratio are fixed in this study, smaller root chord also

means smaller span and lower wing area. The optimal value of the wing root chord is

very near to the minimum value specified to achieve higher stiffness. This trend is

expected in the absence of other design considerations such as wing loading (which

affects landing/take-off speed, maneuverability etc.) and internal fuel volume.

4.4 MDO of Composite Wings

The developed MDO procedure with refined analysis and optimization technique

(gradient bassed) is applied to the design of a composite wing. The wing configuration of

a high speed business jet type airplane is selected for the optimization. Though the

developed procedure is capable of handling multiple objective functions (and

constraints), the example considered here includes only one objective function (with two

constraints). The Laplace domain method of flutter analysis is used in this optimization.

4.4.1 Optimization Problem

The objective is to minimize the weight (W) of the box beam which represents the

load carrying structural member of the wing. The cruise Mach number and altitude are

assumed to be 0.85 and 26000 ft, respectively. In accordance to established design

practice, the flutter/divergence speed is required to exceed 1.20 times the cruise speed.

Therefore, the flutter/divergence dynamic pressure (qf) is constrained to be at least 3.7

psi. Constraints are imposed on the maximum allowable stresses due to static loading of

the wing corresponding to a 3g maneuver. An elliptic spanwise load distribution is

assumed. The Tsai-Wu failure criterion [84] is imposed on the ply stresses at the root
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section. The objectivefunction andconstraintsareexpressedin a similar manneras in

the previous section(Equations(64) - (67)). The compositeply anglesand laminate

thicknessesareusedascontinuousdesignvariables.

4.3.2 Results and Discussions

The selected reference wing has aspect ratio of 10, taper ratio of 0.35 and mid-chord

sweep of 30 ° (Figure 29). The wing geometry is held fixed during optimization. The

width of the box beam is assumed to equal half the wing chord. The wing thickness-to-

chord ratio is assumed to be 12 percent, which accommodates the box beam with height

to width ratio of 20 percent. The box beam is constructed from Carbon-PEEK composite

material [81 ] whose properties are presented in Table 4.

Y

X

Structural Ref. Axis

Composite Box Beam

236 in.

Figure 29. Wing geometry for MDO of composite wings
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The box beamwalls are assumedto be made of eight unidirectional composite

laminates (each consisting of several plies of identical orientation), stacked

symmetrically. It is assumedthatthe laminatesin all four walls havethesamethickness

andthat the thicknessesdo not vary spanwiseor chordwise. The top and the bottom

walls havethesameply angles,asis thecasefor thetwo sidewalls. The ply anglesand

laminatethicknessesareallowedto vary, thusresultingin 12designvariables. Theply

anglesare allowed to vary between-90 ° and +90 ° and the laminate thicknesses vary

between 0.006 inch and 0.048 inch during optimization. A reference configuration with

conventional ply orientations of (0°/90°/+45°/-45°)s for each wall and uniform laminate

thickness of 0.024 inch is used as the initial design.

The structural analysis of the box beam is performed with 10 elements spanwise and a

single element chordwise. The first six normal modes of vibration are used in the

subsequent analysis. The mode shapes are normalized such that the generalized masses

are unity. The generalized aerodynamic forces (GAF) are computed at M=0.85 for 20

values of the reduced frequency between 0 and 1. The wing is divided into 48 panels.

Rational function approximation of the GAF's is performed using four denominator

coefficients. These coefficients are selected to be 0.2, 0.4, 0.6 and 0.8 which produce a

very good fit. Convergence is reached in 10 cycles during which the objective function

and the constraints are evaluated 208 times. The total time taken is 2 hr. 50 min. on Sun

Ultra 1 workstation. Results obtained using the optimization procedure are presented in

Table 6 and in Figure 30.

Table 6. Optimization results for MDO of composite wings

Reference Optimum

Stacking Sequence

top/bottom walls (0°/90°/+45°/-45°)s (-8°/70°/28°/-13°)s
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side walls

Laminate thickness

(all walls, in.)

Wall thickness (in.)

Natural frequency

(first six modes, Hz)

Wing structural weight (lb)

Flutter dynamic pressure

(psi)

Tsai-Wu failure criteria

(0°/90°/+45 °/-45 °)s

(0.024/0.024/0.024/0.024) s

0.192

1.34, 5.55, 15.20,

22.63, 31.94, 37.94

129.2

3.0

1.32

( 15 °/48°/-5 °/-24°)s

(0.019/0.023/0.024/0.023)s

0.178

1.58, 6.45, 17.44,

22.30, 35.79, 37.51

119.1

3.7

0.89

120"

/

129.2

Reference

(a)

Optimum

4_
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•_ - / /
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Figure 30. Optimization results for MDO of composite wings
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The structural weight of the wing reduces by eight percent from 129.2 lb. to 119.1 lb.

(Figure 30(a)), whereas the flutter dynamic pressure increases by 23 percent from 3.0 psi

to 3.7 psi (Figure 30(b)). Also, from Table 6 and Figure 30(c), it is observed that the

Tsai-Wu stress criterion is strongly violated in the reference design (F c =1.32). Through

optimization of the stacking sequence, even a lower wall thickness (resulting in reduced

weight) satisfies the stress constraint (Fc=0.89). The ply angles for the optimized wing

are (-8°/70°/28°/-13°)s in the top and bottom walls and (15°/48°/-5°/-24)s ° in the side

walls. It should be noted that the buckling constraits are not imposed in this

optimization. The laminate thicknesses remain almost unchanged, except for the surface

laminates in each wall. It is to be noted that in a practical design, standard ply angles and

thickness are used. Therefore, the nearest values available must be used.
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Study of the mode shapes (Figures 31-34) indicates similarity between reference and

optimum designs. Modes 1, 2, 3 and 5 are bending modes and modes 4 and 6 are

pitching modes. There is very little coupling between the two types of modes. However,

the natural frequencies (Table 6) indicate an important change from reference to optimum

wing. The frequencies for the bending modes increase by about 15 percent, whereas

those for the pitching modes decrease slightly. As discussed later, it is the bending

modes that exhibit particular flutter characteristics in this wing.

~

--B-- 1 --H-- 3 _ 5

---J--- 2 -F-- 4 J=-- 6
2-

I ' t ' I

0 0.2 0.4 0.6 0.8 1

Spanwise coordinate

Figure 31. Bending mode shape for reference composite wing
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-0o01

0 0.2 0.4 0.6 0.8 1

Spanwise coordinate

Figure 32. Pitching mode shape for reference composite wing

2 =

' I ' I ' I ' I ' I
0 0.2 0.4 0.6 0.8 1

Spanwise coordinate

Figure 33. Bending mode shape for optimized composite wing
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Figure 34. Pitching mode shape for optimized composite wing

Flutter is often caused when the frequencies of any two modes coalesce and the

damping of either of the modes goes to zero. For divergence, the frequency also drops to

zero along with the damping. Figures 35-40 present root loci and frequency and damping

history for the reference and the optimized wings. In both cases, frequencies of modes 1

and 2 coalesce and the damping of mode 1 becomes unstable. The optimized wing has

larger modal damping and somewhat wider separation between these two modes, leading

to higher flutter dynamic pressure.
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4.5. MDO of Smart Composite Wings

The developed MDO procedure is applied to the design of a smart composite wing,

with PZT actuators / sensors bonded to top and bottom surfaces of the box beam. The

wing configuration is similar to a long range high speed business jet. The dimensions are

scaled down to reduce the number of finite elements and aerodynamic panels. The

optimization problem now is associated with multiple objective functions and constraints.

All design variables are treated as continuous variables.

4.5.1 Optimization Problem

The objective is to minimize the structural weight of the wing while maximizing the

aerodynamic efficiency (lift-to-drag ratio). Wing sweep, wall thickness of the box beam,

ply orientations and the thickness of PZT actuators / sensors are design variables. The

problem is formulated as a minimization problem and the two objective functions are as

follows.

Minimize: fl = W

f2= D/L (71)

where W is the weight of the box beam (including actuators), D is the drag and L is the

lift. The cruise Mach number and altitude are assumed to be 0.90 and 30000 ft,

respectively. It is required that the aircraft does not encounter flutter/divergence

anywhere within the flight envelope. Therefore, a constraint is imposed on the flutter

dynamic pressure (qf) which is stated as follows.

gl = 1 - q..__Lf< 0 (72)
8.0
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This constraintimplies that the flutter dynamicpressuremust not be less than 8.0 psi

(M=0.9, SL). Thewing strengthconstraintis basedona 3gmaneuverat thecruiseMach

numberandaltitude. Theuseof wing loading,suitablefor this classof aircraft (70 lb./sq.

ft.), andthe selectedwing area,theultimateloadfor design(ultimateloadfactor = 4.5) is

determined. The spanwiseload distribution is obtained from the panel code [71]

describedearlier. A strengthconstraintis imposedon theply stressesat the root section

wherematerialfailure is mostlikely to occur. The Tsai-Wufailure criterion (discussed

earlierin section4.3) is usedandthis constraintis statedasfollows.

g2 = Fc- 1< 0 (73)

The box beam walls are assumed to be made of eight unidirectional Graphite-Epoxy

(Table 1) composite laminates (each consisting of several plies of identical orientation),

stacked symmetrically. In an effort to reduce the computational expense, the following

assumptions are made about the ply orientations. The top and the bottom walls are

assumed to have identical ply orientations. The ply angles for the two side walls are also

maintained identical (but may be different from the top/bottom walls). Therefore, eight

design variables are used to completely describe the stacking sequence.

Top/bottom walls: (Oi/O2/03/04)s----(_l/_Z/*3/*4)s (74)

Side walls: (01 / 02 / 03/04)s = (*5/*6 / *7 / ,8) s (75)

where the ply angles are allowed to vary between -90 deg. and +90 deg. It is assumed

that the laminates thicknesses do not vary spanwise or chordwise and all four walls have

the same thickness. The laminate thickness design variables are defined as follows.

(t I / t 2 / t 3/t 4)s = (*9/,10/,ll/*,2)s (76)
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wherethe thicknessof eachlaminatecanvary between0.01 in. and0.03 in. The mid-

chordsweepof thewing is definedasa designvariablewith theupperandlower bounds

specifiedasfollows.

Ac/2 =d_l3 25° <_b13 _<400 (77)

It is assumed that a pair of actuators / sensors are surface bonded to the top and the

bottom of the box beam (covering the area of the first element along the wing root). The

thickness of the actuators / sensors (tp), assumed to be identical, is used as a design

variable.

t_ _t

tp = d_l4 0.005 < _bl4 _<0.015 (78)

4.5.2 Results and Discussions

The reference wing has root chord of 50 in., semi-span of 160 in., aspect ratio of

9.5, taper ratio of 0.35, thickness-to-chord ratio of 11 percent and mid-chord sweep of 30

degree. The wing sweep is varied during the optimization and all other parameters are

held constant. The length of the box beam and the side wall areas change as wing sweep

is varied. The width of the box beam is assumed equal to half the wing chord. A

reference configuration with conventional ply orientations of (0°/90°/+45°/-45°)s for each

wall and uniform laminate thickness of 0.02 in. (wall thickness = 0.16 in.) is used as the

initial design. The structural characteristics of the PZT actuators / sensors (G-1195) [48],

which affect mass and stiffness of the wing, as well as the induced strain are included in

the analysis. The applied voltage is such that the maximum electric field for PZT

materials (15000 volts/in.) is not exceeded.

The structural analysis of the box beam is performed with 10 elements spanwise and a

single element chordwise. The first six normal modes of vibration are used for the
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subsequentanalysis. Themodeshapesarenormalizedsuchthat the generalizedmasses

areunity. The generalizedaerodynamicforces(GAF) arecomputedat M=0.90 for 20

valuesof the reducedfrequencybetween0 and 1. Thewing is divided into 48 panels.

Rational function approximationof the GAF's is performedusing four denominator

coefficients(equation(49)). Thesecoefficientsare selectedto be 0.2, 0.4, 0.6 and 0.8

which produceavery goodfit.

Table7. Optimizationresultsfor MDO of smartcompositewing

Reference Optimum

StackingSequence

top/bottom walls

sidewalls

Laminatethickness

(all walls, in.)

Wall thickness(in.)

Mid-chordsweep(deg.)

PZTactuatorthickness(in.)

Applied voltage(volt)

Natural frequency
(first six modes,Hz)

Wing structuralweight (lb)

Lift-to-drag ratio

Flutterdynamicpressure

(psi)

Tsai-Wufailurecriteria

(0°/90°/+45°/-45°)s

(0°/90°/+45°/-45°)s

(0.02/0.02/0.02/0.02)s

0.160

3O

0.005

75

1.64,7.56,21.84,
33.29,46.35,52.37

58.62

11.24

6.9

0.79

(-1°/90°/32°/-44°)s

(2°/90°/44°/-36°)s

(0.025/0.011/0.013/0.012)s

0.122

39

0.011
165

1.46,6.53, 18.43,

27.27,38.09,44.02

47.28

14.71

8.0

0.71
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The developedMDO procedureis computationallyefficient as each run takes

approximatelyone minute on Sun Ultra 1 workstation for the numerical example

presented.Convergenceis reachedin 12cyclesduringwhich theobjectivefunction and

the constraintsareevaluated259times. Figure41 showsthereferenceandthe optimum

wing geometries. The optimizationresultsaresummarizedin Table 7 and Figure 42.

Thestructuralweightof thewing (boxbeamwith actuator/ sensor) reduces by 19 percent

(from 58.62 lb. to 47.28 lb.) and the lift-to-drag ratio increases by 31 percent (from 11.24

to 14.71). The flutter dynamic pressure for the optimized wing increases from 6.9 psi to

8.0 psi and, therefore, satisfies the design constraint. The Tsai-Wu strenght constraint is

well satisfied by both the reference and the optimized designs.
Y

5O

in.

_J_

Dx

Reference wing

17.5 in
Optimized wing

160 in. I

Figure 41. Reference and optimized geometry for smart composite wing
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Thereductionin the weight is achievedthroughlower wall thickness,which reduces

from 0.160in. to 0.122in. Evenwith lower thicknessof the boxbeamwalls, dueto the

optimizedply orientations,laminatethicknessesand (increased)actuatorthickness,the

flutter dynamicpressureincreasesto the requiredvalue in the optimum configuration.

Thesedesignvariablesactuallycontributemore to the flutter dynamicpressurethan is

apparentfrom thefinal results. Thehighersweepangleof the optimizedwing (39 deg.)

hasa detrimentaleffect on flutter, but it reducesthe compressibilitydrag. Though the

higher wing sweepproduceslarger induced drag, the total drag reducesto enhance

aerodynamicefficiency of the wing substantially. Studyof the ply orientationsshows

relatively small changesin the positive angle plies (+45 deg. to +32 deg.) for the

top/bottomwalls andnegativeangleplies (-45deg.to -36 deg.)for the sidewalls. The

other ply angles remain nearly unchanged. However, the changesin the laminate

thicknessesaresignificant. Thethicknessof thezerodegreelaminateincreasesto 0.025

in., whereasthat for otherlaminatesdecreasesto about0.012in. As shownlater, flutter

is causedby thefirst two bendingmodeswhicharestiffeneddueto increasedthicknessof

thezerodegreelaminates.It is to benotedthatin apracticaldesign,standardply angles

andthicknessareused. Therefore,thenearestvaluesavailablemust beused. Through

optimizationof theply anglesandlaminate(ply) thicknesses,evena lowerwall thickness

(resultingin reducedweight)reducesthemaximumstressin the laminates.

Study of the mode shapes(not shown) indicatessimilarity betweenreferenceand

optimum designs. Modes 1, 2, 3 and 5 representbendingmodesand modes4 and 6

representpitching modes. The natural frequenciesreducefrom referenceto optimum

design,largely dueto the increasedwing sweep. Theeigenvaluesof the characteristic

equationvarywith dynamicpressure.A root locusconstructedby varyingthealtitudefor

a givenMachnumberyieldsflutter dynamicpressurewhenoneof therealrootsbecomes

zeroandtheimaginaryroot is non-zero.Thevariationsin frequencyandmodaldamping
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with dynamicpressureprovidean insight into theonsetof flutter/divergence.Flutter is

oftencausedwhenthefrequenciesof anytwo modescoalesceandthedampingof either

of thesemodesgoesto zero. For divergence,thefrequencyalsodropsto zeroalongwith

the damping. Figures43-48presentroot loci and frequencyanddampinghistoriesfor

referenceandoptimizedwings. In bothcases,frequenciesof modes1and2 coalesceand

the damping of mode 1 becomesunstable. The optimized wing has larger modal

dampingleadingto higherflutter dynamicpressure,althoughthe frequencyseparationis

smallerbetweenthesetwo modes.
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Figure 43. Root locus for smart composite wing (reference design)
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5. MDO of Turbomachinery Blades

Aerodynamic and heat transfer design objectives are integrated along with various

mechanical constraints on the blade geometry for the multidisciplinary design

optimization of turbine blade profile. The K-S function method is used for multiobjective

optimization. The methods used for blade geometric modeling and aerodynamic and heat

transfer analyses are briefly described. A numerical example is presented showing the

benefits of application of the developed MDO procedure.

5.1 Blade Modeling

Bezier curves have properties that make them ideal choice to represent complex

shapes [65]. These curves can be explicitly expressed through the use of Bernstein

polynomials. The representation of airfoil geometry by Bezier-Bernstein polynomials has

been successfully used for shape optimization [61, 64]. A two-dimensional boundary is

defined by Bezier-Bernstein curve of degree n as follows.

11

b n (t) = Z bj B._ (t) (79)
.j=o

The vector of Bezier control points b j, consisting (n+l) values of x and y coordinates of

the control points, are varied to generate different Bezier curves. The n-th degree

Bernstein polynomials are given by

n n! t J(1 - t) n-j (80)
Bj (t)- j!(n-j)!

where the values of interpolation points t lie between 0 and 1.
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This approach can accurately represent a complex shape with relatively small number

of geometric control points (Figure 49), which are used as design variables. Hence, a

reduced number of design variables may be adopted in the design optimization procedure.

The Bezier curves also possess high order of continuity and the end points pass through

the first and last control points.
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Figure 49. Bezier-Bernstein representation of turbine blade geometry

5.2 Analysis

5.2.1 Aerodynamic Analysis

Since the results of the optimization procedure depend on the accuracy of the analysis

techniques used, it is important to integrate reliable analyses within the optimization loop.

The complex flow environment in turbomachinery components can be best described by

three-dimensional analysis. However, the coupling of such codes within a closed loop
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optimization procedure can be computationally very expensive. In the current research,

the aerodynamic analysis is performed using the RVCQ3D (Rotor Viscous Code Quasi-3-

D) code [66-67]. It is a rapid code capable of analyzing blade-to-blade viscous flows in

turbomachines. The analysis is based on the thin shear layer approximation of the

Navier-Stokes equations. The flow equations are mapped to a body-fitted coordinate

system and a periodic C-shaped grid is used. Second-order finite differences and an

explicit multistage Runge-Kutta scheme are implemented for time marching flow

solution. For turbulent flow calculations, the Baldwin-Lomax turbulence model is

available. The method includes the quasi-three-dimensional effects of rotation, radius

change and stream surface thickness variation. The code has been validated for several

test cases and has been used for many applications [85].

Grid generation is accomplished using the GRAPE (GRids about Airfoils using

Poisson's Equation) code [68-69]. This code performs grid generation by solving Poisson

equations with arbitrarily specified inner and outer boundary points. The desired grid

spacing and intersection angles at the boundaries are obtained through proper choice of

the forcing terms in the Poisson equations.

5.2.2 Heat Transfer Analysis

The temperature distribution in the blade interior [86] is obtained by solving the

following equation of two-dimensional heat conduction.

: 0 (81)

In the above equation, T is the local blade temperature and k is the thermal conductivity

of the blade material. The finite element method is used to solve the boundary value
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problem. The computationaldomainis discretizedusing lineartriangularelements. The

meshis regeneratedasthebladegeometrychangesduringoptimization. Thetemperature

obtainedfrom theRVCQ3Dsolutionis usedto specifythe Dirichlet typenodalboundary

condition. Using the Galerkinapproach,the boundaryvalueproblem is reducedto the

following systemof linearequations

KT = f

which is solvedfor the unknownnodal temperaturesT.

(82)

The coefficient matrix K and

the vector f are evaluated using the finite element formulation.

5.3 Optimization Problem

The developed multidisciplinary optimization procedure [87] has been applied to the

design of a subsonic turbine blade. The objectives are to minimize the total pressure loss

and maximize the kinetic energy efficiency [85] for the blade-to-blade flow by changing

the blade profile. The total pressure loss is defined as

o_ = 1 - e02/eol

where subscripts 1 and 2 refer to conditions at inlet and exit, respectively.

energy efficiency is defined by the following equation.

where V 2 is the relative flow velocity at exit and

y-l]
g2idea, : 2CpY0, 1-/P2 / T

\Po_) J

(83)

The kinetic

(84)

(85)
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Since no coolant hole or film cooling is consideredin the present design,

minimization of averageand maximum blade temperatureswas not included as an

objective. Thebladetemperaturewastreatedasaconstraint.Themaximumandaverage

bladetemperaturesareconstrainednot to exceedthatof thereferenceblade. Bladechord,

trailing edge thicknessand staggerangle are kept constantduring the optimization.

Accordingly,thetwo controlpointsatthetrailingedgeandtheleadingedgecontrolpoint

arenot varied. Thetangentialcoordinatesof theremainingtencontrol pointsare treated

as designvariables,while their axial coordinatesremainfixed. The areaof the blade

section is constrainedto lie within ten percentof the referencebladearea to assure

structuralintegrityandto preventlargeweight increase.

5.4 Results and Discussions

The reference blade (Figure 50) represents a standard section used for turbine design.

The blade has a finite trailing edge thickness and its chord length and stagger angle are

0.122 ft and 45 degrees, respectively. The annular cascade is assumed to have 36 blades

rotating at 2000 rpm. The following flow parameters are specified: Reynolds number =

6xl06 per ft, inlet Mach number (absolute) = 0.21, inlet flow angle (absolute) = 0 °, inlet

total temperature = 1500 K, exit static pressure ratio = 0.70, and relative flow angle at

trailing edge = -65 degrees. The external flow field around the blade is discretized using

the GRAPE code with 97 points around the blade and 31 points normal to the blade. The

flow calculations are done with RVCQ3D utilizing four stage Runge-Kutta scheme. The

blade interior is discretized with approximately 2100 elements for computing the

temperature distribution.
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Figure 50. Reference and optimum blade geometry

The optimization results are presented in Figures 50-57. The reference and optimized

blade profiles are shown in Figure 50. Significant changes to the suction and the pressure

surfaces are observed, though the airfoil area remains unchanged. The optimized blade

profile represents the most efficient aerodynamic shape at the flow conditions specified.

In a practical application of the developed MDO procedure, additional constraints may be

imposed on the blade geometry from other design considerations. The surface Mach

number and static pressure distributions are shown in Figures 51 and 52, respectively.

On the pressure side, the small adverse pressure gradient and flow deceleration in the

leading edge region are eliminated, resulting in a smoother velocity profile. The pressure

gradient on the suction side is more favorable and hence the flow accelerates to higher

Mach number near the leading edge. The pressure and the Mach number variations
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remainnon-smoothatthebladetrailing edge,becauseits geometrywasheld fixed during

theoptimization
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Figure 52. Static pressure distribution

The total pressure ratios P02 / P01 are plotted in Figure 53 for reference and optimized

blades. The total pressure loss is reduced from 2.9 percent to 1.1 percent. It should be

noted that even a small reduction in the turbine loss has a significant effect on the overall

performance of the engine. There is a substantial increase (5.5 percent) in the kinetic

energy efficiency due to optimization (Figure 54). The temperature distribution in the

blade interior are presented in Figures 55 and 56 for reference and optimized profiles,

respectively. The blade temperature constraint is satisfied as shown in Figure 57, where

the temperature of the optimized blade is normalized with respect to that of the reference

blade.
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Figure 53. Exit total pressure ratio
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6. Concluding Remarks

A new multidisciplinary design optimization procedure has been developed for the

conceptual design of composite wings with surface bonded piezoelectric actuators /

sensors. The analysis and optimization methods used are computationally efficient and

sufficiently rigorous for using the developed MDO procedure for actual design

applications. The optimization procedure for smart composite wing design involves the

coupling of structural mechanics (including smart material), aeroelasticity and

aerodynamics. The load carrying member of the wing is idealized and represented as a

composite box beam. Each wall of the box beam is analyzed as a composite laminate

using a refined higher-order displacement field to account for the variations in transverse

shear stresses through the thickness. Detailed structural modeling issues associated with

piezoelectric actuation of composite structures are included. This structural model is

suitable for analyzing both thin- or thick-walled constructions. The governing equations

of motion are solved using the finite element method to analyze practical wing

geometries.

The wing steady and unsteady aerodynamic loads are obtained using a panel code

based on the constant-pressure lifting surface method. This method utilizes the linearized

aerodynamic potential theory for compressible flows. Two methods for

flutter/divergence analysis have been implemented. The V-g method has been used to

predict accurate flutter/divergence speed. The Laplace domain method of flutter

prediction involves approximating generalized aerodynamic forces, but it produces root-

loci of the system which give an insight into the physical phenomena leading to

flutter/divergence.



101

In the gradientbasedoptimizationprocedure,the Kreisselmeier-Steinhauser(K-S)

function approachis usedto efficiently integratetheobjective functionsandconstraints

into a single envelopefunction. The resultingunconstrainedoptimization problem is

solved using the Broyden-Fletcher-Goldberg-Shannoalgorithm. For optimization

problemsinvolving bothcontinuousanddiscretedesignvariables,a procedurehasbeen

developedusing the hybrid optimization technique. Basedon the severalnumerical

examplespresented,thefollowing importantobservationsaremade.

. Flutter solution is obtained for an example wing using the present approach and

the classical laminate theory (CLT), which neglects transverse shear stresses. The

flutter speed using CLT is about 10 percent higher compared to that using the

present approach. This significant difference in flutter prediction between the two

theories can be a very critical issue since the flutter phenomenon is catastrophic in

nature. The difference in the flutter speed is obviosly due to the presence of

through-the-thickness transverse shear stresses which are ignored by CLT. This

example establishes the significance of the refined higher-order displacement field

on the aeroelastic stability of composite wings.

o The effect of composite ply orientations on flutter/divergence dynamic pressure

has been studied, using the Laplace domain method. It has been shown that the

existence of various coupling modes, for different ply orientations, strongly

influence the wing aeroelastic characteristics.

. In the numerical example for the hybrid optimization technique, wing root chord

and wall thickness are used as continuous design variables, whereas the ply

orientations are treated as discrete variables. The wing weight is used as objective

function which is minimized with constraints on flutter/divergence speed and
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stressesat the wing root due to the specifiedair loads. The optimizeddesign

reducesthewing weightby 32percentwhile satisfyingthe constraints.However,

dueto the useof simulatedannealingwithin the optimizationalgorithm,a large

number of function evaluations are required. This makes the procedure

computationallyexpensive.

. The developed MDO procedure with refined analysis methods and sophisticated

(gradient bassed) optimization technique has been applied to the design of a

composite wing. The wing configuration of a high speed business jet type

airplane is selected for the optimization. The optimization converges in 10 cycles

taking only 2 hr. 50 min. on Sun Ultra 1 workstation. The optimized design has

significantly lower wing weight (eight percent) and higher flutter dynamic

pressure (23 percent). The wing strength constraint, though severely violated in

the initial design, is met by the optimized design.

. The higher-order theory based composite box beam model has been extended to

include piezoelectric actuators / sensors bonded to top and bottom surfaces. The

optimization problem is formulated with the objective of simultaneously

minimizing wing weight and maximizing its aerodynamic efficiency. Design

variables include composite ply orientations, ply thicknesses, wing sweep, and

piezoelectric actuator thickness. Constraints are placed on the flutter/divergence

dynamic pressure and wing root stresses. The maximum electric field applied to

the actuators is restricted by the coercive field of the PZT material. The

developed MDO procedure is computationally efficient as each run takes

approximately one minute on Sun Ultra 1 workstation for the numerical example

presented. Convergence is reached in 12 cycles during which the objective

function and the constraints were evaluated 259 times. The optimal design shows
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physically meaningfulresults. The weightof the wing is reducedby 19percent

andthelift-to-dragratio increasesby 31percent.Theflutter dynamicpressurefor

the optimizedwing increasesfrom 6.9 psi to 8.0 psi andthe Tsai-Wu strenght

constraintis well satisfied.Thewing sweepis increasedto 39degreefor reduced

compressibilitydrag (henceincreasedaerodynamicefficiency).The thicknessof

zero degreeplies is substantiallyincreasedwhich enhancesthe damping of

bendingmodesleadingto higherflutter dynamicpressure.The largerthicknessof

thePZTactuatorsalsohelpsincreaseflutter dynamicpressure.

The developmentof a new multidisciplinary optimizationprocedurefor the designof

turbine blades is presented. The procedureintegratesaerodynamicand heat transfer

designobjectivesalongwith mechanicalconstraintsonbladegeometry.Bezier-Bernstein

representationof the bladeprofile leadsto a relatively small set of designvariables.

Viscousblade-to-bladeflow is calculatedthroughthin shearlayer approximationof the

Navier-Stokesequation. A Poisson'sequationbasedgrid generatorprovidesthe grid for

theflow solution. The maximumandaveragebladetemperaturesareobtainedthrougha

finite elementanalysis. Total pressure loss is minimized and the exit kinetic energy

efficiency is maximized with constraints on blade temperatures and geometry. The K-S

function approach is used to solve the multiobjective constrained nonlinear optimization

problem. The results for the numerical example show significant improvements after

optimization. The total pressure loss is reduced by 1.8 percent and there is 5.5 percent

increase of the kinetic energy efficiency. The maximum and average blade temperatures

for the optimum blade are lower than the reference case. Other design constraints such as

airfoil area, chord, trailing edge thickness and stagger angle are satisfied.
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